
Lecture 7 on Sept. 30

Today we firstly studied some general theory about rational functions. Then we considered a special rational
function, linear transformation, which is the rational function of order 1

Example 1: . Given

R(z) =
z4

z3 − 1
,

write it into the sum of partial fractions.

Solution: Step 1. by long division, we know that

R(z) = z +
z

z3 − 1
.

Therefore we denote by G(z) = z the polynomial part of R(z) and H(z) = z/(z3 − 1) the proper rational
part of R(z);

Step 2. Supposing that ω0 is a root of the polynomial z3 − 1, we calculate that

H(ω0 +
1

ζ
) =

ω0ζ
3 + ζ2

3ω2
0ζ

2 + 3ω0ζ + 1
=

1

3ω0
ζ + proper rational function.

The above calculations show that if ωj is the j-th root of z3 − 1, then Gj(ζ) = ζ/(3ωj).

Step 3. By the above arguments, we can write R(z) into the sum of partial fractions as follows:

R(z) = z +
∑
j

1

3ωj

1

z − ωj
. (0.1)

Now let us take a close look at (0.1). Usually in the theory of single variable functions, the domain of
a rational function contains the points at where the denominator polynomial is non-zero. but from (0.1),
when z → ωj , z and 1/(z − ωi) converge to finite numbers for i 6= j. The only divergent term is 1/(z − ωj).
Therefore it shows that when z → ωj , R(z) → ∞. So if ∞ is included in the range of R(z), then we can
allow ωj lie in the domain of R(z). This motivates us to extend the range of a rational function from C to
the Riemann sphere C

⋃
{∞}. We can also extend the domain of R(z) to the Riemann sphere. In fact, if

z =∞, the proper rational part of R(z) in (0.1) equal 0. The only divergent term comes from the polynomial
part of R(z). That is z. So we know that as z → ∞, R(z) → ∞. Therefore we can define R(∞) = ∞.
More generally, we know that given a rational function, we can always regard it as a function from Riemann
sphere to Riemann sphere. In fact if R(z) is an arbitrary rational function, we can write it into the sum of
partial fractions as follows

R(z) = G(z) +
∑
j

Gj(
1

z − βj
). (0.2)

Here G and Gj are polynomials. for z 6= ∞, βj , R(z) is a finite number. If z → βj , then the term
Gj(1/(z − βj)) dominates. All the remaining terms approach to finite numbers. Moreove one can also show
that Gj(1/(z − βj)) approach to ∞ as z → βj . Then we can define R(βj) = ∞. Samely we can define
R(∞) =∞ if G(z) is a non-constant polynomial.

Motivated by the above arguments, from now on, we always regard a rational function as a function de-
fined on the Riemann sphere and taking its values in Riemann sphere. Moreover associated with a rational
function R(z), we define
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Definition 0.1. if p is a point such that R(p) =∞, then we call p a pole point of R(z). if q is a point such
that R(q) = 0, then we call q a zero point of R(z).

In fact zeros and poles are quite related. if p is a zero of R(z), then p must be a pole of the rational
function 1/R(z). So in the following arguments, we focus on the pole points. Not just the definitions above,
associated with any pole point, we can define a natural number by which the divergent rate of a rational
function can be determined around its pole points.

Definition 0.2. Noticing (0.2), when z → βj, the term Gj(1/(z − βj)) dominates. So we define the order
of βj ( denoted by ord(βj) ) to be the order of the polynomial Gj. Samely we define the order of ∞ (denoted
by ord(∞)), to be the order of the polynomial G(z) if ∞ is a pole point of R(z).

Moreove we define

Definition 0.3. Given a rational function R(z), its order is defined by the summation of all orders of its
pole points.

Example 2. The order given in Definition 0.3 is consistent with the order of a polynomial if R(z) is a
polynomial.

Example 3. Using the rational function in Example 1, we see that it has four pole points ω1, ω2, ω3,∞,
where ω1, ω2, ω3 are the three roots of z3− 1. Since the polynomials G(z) and Gj are all of order 1, then we
know that ord(∞) = ord(βj) = 1. here j = 1, ..., 3. Therefore the order of the rational function is 4.

Example 4. The rational functions of order 0 are just constant functions.

Now we begin to study the rational functions of order 1. That is the so-called linear transformation.
Noticing that if the order of a rational function is 1, then by the sum of partial fractions in (0.2) we know
that ord(∞) +

∑
j ord(βj) = 1. Therefore only the following two cases may happen:

Case 1: there is no βjs and ord(∞) = 1;

Case 2: ∞ is not a pole and there is only one element in the set {βj} whose order is 1.

Obviously, the Case 1 corresponds to the linear function az + b where a is a non-zero complex number.
Rational functions in Case 2 share a general form

C1 +
C2

z − β
,

where C2 6= 0. One can easily show that rational functions in Cases 1 and 2 can all be written as

az + b

cz + d
, with ad 6= bc. (0.3)

In the following, a rational function is called linear transformation if (0.3) holds. One of the most important
properties of linear transformations is the theorem shown as follows

Theorem 0.4. Linear transformation maps circles to circles.

To show this theorem, we need a sort of preparations.

Proposition 0.5. Linear transformation is invertible.

Proof. The proof is just a straightforward calculation. Given w = (az + b)/(cz + d), we can solve z by w as
follows z = (−dw + b)/(cw − a), provided that w 6= a/c. If w = a/c, then z =∞.
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The second proposition is

Proposition 0.6. Compsition of two linear transformations are also linear transformations.

The proof is trivial. One can try the following example by yourself

Example 5. Let T1 = iz/(z + 2), T2 = z/(z + 1). Find out T1T2 and T2T1.

Proposition 0.7. Given three distinct points in the Riemann sphere, denoted by z2, z3 and z4, there is a
unique linear transformation which maps (z2, z3, z4) to (1, 0,∞)

Proof. Clearly

Sz =
z − z3
z − z4

/
z2 − z3
z2 − z4

(0.4)

is a linear transformation which maps (z2, z3, z4) to (1, 0,∞). If S1 and S2 are two linear transformations
which map (z2, z3, z4) to (1, 0,∞), then by Propositions 0.5 and 0.6, S1S

−1
2 is a linear transformation and

moreover it maps (1, 0,∞) to (1, 0,∞). Assume

S1S
−1
2 (z) =

az + b

cz + d
.

then clearly S1S
−1
2 (∞) = a/c = ∞. This fact shows that c = 0. Therefore we can assume S1S

−1
2 (z) =

a1z + b1. When z = 0, it holds that S1S
−1
2 (0) = b1 = 0. When z = 1, it holds that S1S

−1
2 (1) = a1 = 1.

All the above arguments show that S1S
−1
2 (z) = z for all z a complex number. In other words, S1S

−1
2 is an

identity map.

Definition 0.8. We also define (z, z2, z3, z4) to be the right-hand side of (0.4). Conventionally (z, z2, z3, z4)
is called cross-ratio of the four numbers z, z2, z3 and z4. one should know that the value of the cross-ratio
(z, z2, z3, z4) is evaluated as follows: using z2, z3 and z4, we can find a linear transformation by Proposition
0.7. We denote this linear transformation by S. The cross-ration is obtained by evaluating S at z.

The cross-ration has two important properties.

Proposition 0.9. For any linear transformation T , (Tz1, T z2, T z3, T z4) = (z1, z2, z3, z4).

Proof. Letting Sz = (z, z2, z3, z4), then one can show that ST−1 is a map which sends (Tz2, T z3, T z4) to
(1, 0,∞). Therefore by Proposition 0.7, we know that ST−1(w) = (w, Tz2, T z3, T z4) for any complex number
w. Setting w = Tz1, the proof is finished.

The second property associated with cross-ratio is

Proposition 0.10. Im(z1, z2, z3, z4) = 0 if and only if the four points z1, z2, z3 and z4 lie on the same circle
or straight line.

Proof. we sketch the proof. If the four points lie on a same circle, then we know that the angle ∠z3z2z4 equals
to the angle ∠z3z1z4. Clearly ∠z3z2z4 is given by the argument of (z2−z3)/(z2−z4). ∠z3z1z4 is given by the
argument of (z1 − z3)/(z1 − z4). Therefore we know that arg((z2 − z3)/(z2 − z4)) = arg((z1 − z3)/(z1 − z4)).
This equivalently shows that Im(z1, z2, z3, z4) = 0.

We are now ready to prove Theorem 0.4.
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Proof of Theorem 0.4. Fixing z2, z3, z4 on a circle C, Tz2, T z3, T z4 also determine a circle, say C ′. Here
T is a linear transformation. Choosing z an arbitrary point on C, then by Proposition 0.10, we have
Im(z, z2, z3, z4) = 0. Using Proposition 0.9, it also holds Im(Tz, Tz2, T z3, T z4) = Im(z, z2, z3.z4) = 0. Still
by Proposition 0.10, Tz should lie on the circle C ′. The proof is done.
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