Lecture 7 on Sept. 30

Today we firstly studied some general theory about rational functions. Then we considered a special rational function, linear transformation, which is the rational function of order 1

Example 1: . Given

$$R(z) = \frac{z^4}{z^3 - 1},$$

write it into the sum of partial fractions.

Solution: Step 1. by long division, we know that

$$R(z) = z + \frac{z}{z^3 - 1}.$$

Therefore we denote by G(z) = z the polynomial part of R(z) and $H(z) = z/(z^3 - 1)$ the proper rational part of R(z);

Step 2. Supposing that ω_0 is a root of the polynomial $z^3 - 1$, we calculate that

$$H(\omega_0 + \frac{1}{\zeta}) = \frac{\omega_0 \zeta^3 + \zeta^2}{3\omega_0^2 \zeta^2 + 3\omega_0 \zeta + 1} = \frac{1}{3\omega_0} \zeta + \text{proper rational function.}$$

The above calculations show that if ω_j is the *j*-th root of $z^3 - 1$, then $G_j(\zeta) = \zeta/(3\omega_j)$.

Step 3. By the above arguments, we can write R(z) into the sum of partial fractions as follows:

$$R(z) = z + \sum_{j} \frac{1}{3\omega_{j}} \frac{1}{z - \omega_{j}}.$$
(0.1)

Now let us take a close look at (0.1). Usually in the theory of single variable functions, the domain of a rational function contains the points at where the denominator polynomial is non-zero. but from (0.1), when $z \to \omega_j$, z and $1/(z - \omega_i)$ converge to finite numbers for $i \neq j$. The only divergent term is $1/(z - \omega_j)$. Therefore it shows that when $z \to \omega_j$, $R(z) \to \infty$. So if ∞ is included in the range of R(z), then we can allow ω_j lie in the domain of R(z). This motivates us to extend the range of a rational function from \mathbb{C} to the Riemann sphere $\mathbb{C} \bigcup \{\infty\}$. We can also extend the domain of R(z) to the Riemann sphere. In fact, if $z = \infty$, the proper rational part of R(z) in (0.1) equal 0. The only divergent term comes from the polynomial part of R(z). That is z. So we know that as $z \to \infty$, $R(z) \to \infty$. Therefore we can define $R(\infty) = \infty$. More generally, we know that given a rational function, we can always regard it as a function from Riemann sphere to Riemann sphere. In fact if R(z) is an arbitrary rational function, we can write it into the sum of partial fractions as follows

$$R(z) = G(z) + \sum_{j} G_{j}(\frac{1}{z - \beta_{j}}).$$
(0.2)

Here G and G_j are polynomials. for $z \neq \infty, \beta_j, R(z)$ is a finite number. If $z \rightarrow \beta_j$, then the term $G_j(1/(z - \beta_j))$ dominates. All the remaining terms approach to finite numbers. Moreove one can also show that $G_j(1/(z - \beta_j))$ approach to ∞ as $z \rightarrow \beta_j$. Then we can define $R(\beta_j) = \infty$. Samely we can define $R(\infty) = \infty$ if G(z) is a non-constant polynomial.

Motivated by the above arguments, from now on, we always regard a rational function as a function defined on the Riemann sphere and taking its values in Riemann sphere. Moreover associated with a rational function R(z), we define **Definition 0.1.** if p is a point such that $R(p) = \infty$, then we call p a pole point of R(z). if q is a point such that R(q) = 0, then we call q a zero point of R(z).

In fact zeros and poles are quite related. if p is a zero of R(z), then p must be a pole of the rational function 1/R(z). So in the following arguments, we focus on the pole points. Not just the definitions above, associated with any pole point, we can define a natural number by which the divergent rate of a rational function can be determined around its pole points.

Definition 0.2. Noticing (0.2), when $z \to \beta_j$, the term $G_j(1/(z - \beta_j))$ dominates. So we define the order of β_j (denoted by $\operatorname{ord}(\beta_j)$) to be the order of the polynomial G_j . Samely we define the order of ∞ (denoted by $\operatorname{ord}(\infty)$), to be the order of the polynomial G(z) if ∞ is a pole point of R(z).

Moreove we define

Definition 0.3. Given a rational function R(z), its order is defined by the summation of all orders of its pole points.

Example 2. The order given in Definition 0.3 is consistent with the order of a polynomial if R(z) is a polynomial.

Example 3. Using the rational function in Example 1, we see that it has four pole points $\omega_1, \omega_2, \omega_3, \infty$, where $\omega_1, \omega_2, \omega_3$ are the three roots of $z^3 - 1$. Since the polynomials G(z) and G_j are all of order 1, then we know that $\operatorname{ord}(\infty) = \operatorname{ord}(\beta_j) = 1$. here j = 1, ..., 3. Therefore the order of the rational function is 4.

Example 4. The rational functions of order 0 are just constant functions.

Now we begin to study the rational functions of order 1. That is the so-called linear transformation. Noticing that if the order of a rational function is 1, then by the sum of partial fractions in (0.2) we know that $\operatorname{ord}(\infty) + \sum_{j} \operatorname{ord}(\beta_{j}) = 1$. Therefore only the following two cases may happen:

Case 1: there is no β_i s and $\operatorname{ord}(\infty) = 1$;

Case 2: ∞ is not a pole and there is only one element in the set $\{\beta_i\}$ whose order is 1.

Obviously, the Case 1 corresponds to the linear function az + b where a is a non-zero complex number. Rational functions in Case 2 share a general form

$$C_1 + \frac{C_2}{z - \beta},$$

where $C_2 \neq 0$. One can easily show that rational functions in Cases 1 and 2 can all be written as

$$\frac{az+b}{cz+d}, \qquad \text{with } ad \neq bc. \tag{0.3}$$

In the following, a rational function is called linear transformation if (0.3) holds. One of the most important properties of linear transformations is the theorem shown as follows

Theorem 0.4. Linear transformation maps circles to circles.

To show this theorem, we need a sort of preparations.

Proposition 0.5. Linear transformation is invertible.

Proof. The proof is just a straightforward calculation. Given w = (az + b)/(cz + d), we can solve z by w as follows z = (-dw + b)/(cw - a), provided that $w \neq a/c$. If w = a/c, then $z = \infty$.

The second proposition is

Proposition 0.6. Compution of two linear transformations are also linear transformations.

The proof is trivial. One can try the following example by yourself

Example 5. Let $T_1 = iz/(z+2)$, $T_2 = z/(z+1)$. Find out T_1T_2 and T_2T_1 .

Proposition 0.7. Given three distinct points in the Riemann sphere, denoted by z_2 , z_3 and z_4 , there is a unique linear transformation which maps (z_2, z_3, z_4) to $(1, 0, \infty)$

Proof. Clearly

$$Sz = \frac{z - z_3}{z - z_4} \bigg/ \frac{z_2 - z_3}{z_2 - z_4} \tag{0.4}$$

is a linear transformation which maps (z_2, z_3, z_4) to $(1, 0, \infty)$. If S_1 and S_2 are two linear transformations which map (z_2, z_3, z_4) to $(1, 0, \infty)$, then by Propositions 0.5 and 0.6, $S_1S_2^{-1}$ is a linear transformation and moreover it maps $(1, 0, \infty)$ to $(1, 0, \infty)$. Assume

$$S_1 S_2^{-1}(z) = \frac{az+b}{cz+d}.$$

then clearly $S_1S_2^{-1}(\infty) = a/c = \infty$. This fact shows that c = 0. Therefore we can assume $S_1S_2^{-1}(z) = a_1z + b_1$. When z = 0, it holds that $S_1S_2^{-1}(0) = b_1 = 0$. When z = 1, it holds that $S_1S_2^{-1}(1) = a_1 = 1$. All the above arguments show that $S_1S_2^{-1}(z) = z$ for all z a complex number. In other words, $S_1S_2^{-1}$ is an identity map.

Definition 0.8. We also define (z, z_2, z_3, z_4) to be the right-hand side of (0.4). Conventionally (z, z_2, z_3, z_4) is called cross-ratio of the four numbers z, z_2, z_3 and z_4 . one should know that the value of the cross-ratio (z, z_2, z_3, z_4) is evaluated as follows: using z_2, z_3 and z_4 , we can find a linear transformation by Proposition 0.7. We denote this linear transformation by S. The cross-ratio is obtained by evaluating S at z.

The cross-ration has two important properties.

Proposition 0.9. For any linear transformation T, $(Tz_1, Tz_2, Tz_3, Tz_4) = (z_1, z_2, z_3, z_4)$.

Proof. Letting $Sz = (z, z_2, z_3, z_4)$, then one can show that ST^{-1} is a map which sends (Tz_2, Tz_3, Tz_4) to $(1, 0, \infty)$. Therefore by Proposition 0.7, we know that $ST^{-1}(w) = (w, Tz_2, Tz_3, Tz_4)$ for any complex number w. Setting $w = Tz_1$, the proof is finished.

The second property associated with cross-ratio is

Proposition 0.10. Im $(z_1, z_2, z_3, z_4) = 0$ if and only if the four points z_1, z_2, z_3 and z_4 lie on the same circle or straight line.

Proof. we sketch the proof. If the four points lie on a same circle, then we know that the angle $\angle z_3 z_2 z_4$ equals to the angle $\angle z_3 z_1 z_4$. Clearly $\angle z_3 z_2 z_4$ is given by the argument of $(z_2 - z_3)/(z_2 - z_4)$. $\angle z_3 z_1 z_4$ is given by the argument of $(z_1 - z_3)/(z_1 - z_4)$. Therefore we know that $\arg((z_2 - z_3)/(z_2 - z_4)) = \arg((z_1 - z_3)/(z_1 - z_4))$. This equivalently shows that $\operatorname{Im}(z_1, z_2, z_3, z_4) = 0$.

We are now ready to prove Theorem 0.4.

Proof of Theorem 0.4. Fixing z_2, z_3, z_4 on a circle C, Tz_2, Tz_3, Tz_4 also determine a circle, say C'. Here T is a linear transformation. Choosing z an arbitrary point on C, then by Proposition 0.10, we have $\text{Im}(z, z_2, z_3, z_4) = 0$. Using Proposition 0.9, it also holds $\text{Im}(Tz, Tz_2, Tz_3, Tz_4) = \text{Im}(z, z_2, z_3, z_4) = 0$. Still by Proposition 0.10, Tz should lie on the circle C'. The proof is done.